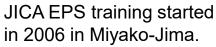

JICA EPS Training started from Miyako-Jima, Okinawa. EPS is Wise Use of Natural Purification System.

Freshwater Lens

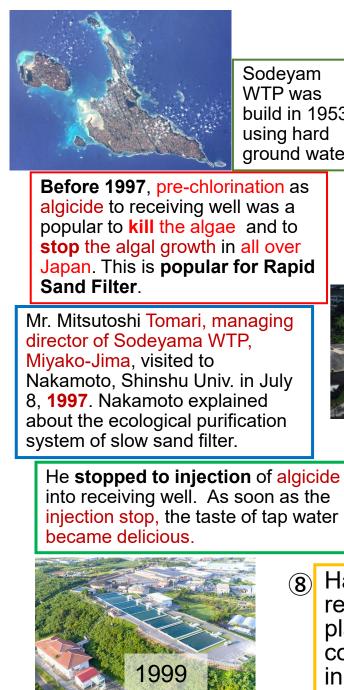
Part 13.

EPS 2025-OBW Nov. Part 13:121-126 6 slides

We use natural purified water.


Filipe

Miyako-Jima island is an uplifted coral reef island where is quit different environment compared with main part of Japan.


Area of islands of Miyako-Jima is 204 km2, population is 55,000 persons.

In the filter pond, algal bloom was so severe. They could not flow out The **pre-chlorination** was a popular treatment to stop the from the scum out. algal growth for WTP in all WTP was over Japan. The close the They pumped up the underground build in 1953 scum out was also popular. using hard water as water ground water. source. After the injection stopped in 1997, the algae grew well in filter ponds. Filter pond Floating algae 000000 Algal mat 6 New hard work raised to remove floating algae. Biological processing has begun to work. EPS functioned. The tap water Hardness became delicious. The recovery of the reducing taste was **one year** plant was before the run of completed the hardness in 1998. reducing plant. 122

Sodeyama Purification plant

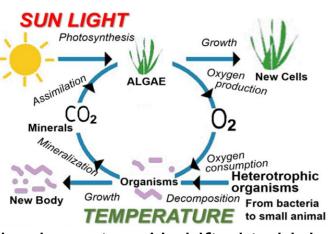
Miyako-Jima, Okinawa

Receiving

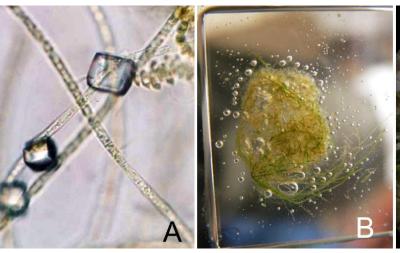
Designed capacity (7 filters, 1 filter is spare : 8 (new)+1 (old)=9 filters)

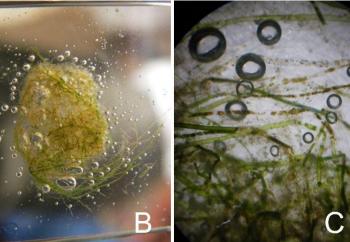
17.25m x 27.6m(x2.6m) x7 filter ponds (17.25m x 27.6m=476.1m2) 23.7m x 20.0m(x2.6m) x 1 filter pond $(23.7m \times 20.0m = 474m2)$

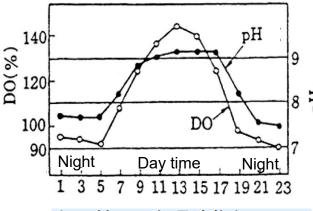
 $475m2 \times 7m/d = 3.325 \text{ m}3/d$ x 7 filters= 23,275 m3/d Water demand 400 liter/day/person = 58,000 persons



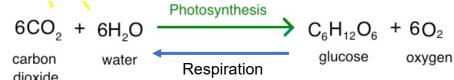
Refresh plant

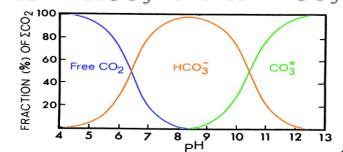

Hardness reducing plant





Due to active photosynthesis, water pH shifted to high.





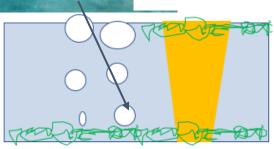
合山幹二、水環境指標(1979)

carbonic acid bicarbonate $CO_{2(g)} + H_2O \rightarrow H_2CO_3 \leftarrow \rightarrow H^+ + HCO_3^- \leftarrow \rightarrow H^+ + \overline{CO_3}^2$ limestone:CaCO3

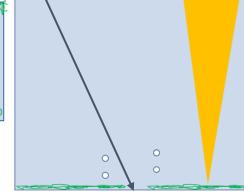
Biological softening happened by active photosynthesis process.


using bucket model.

Sand surface was taken.



Small sand and uniformity of sand size is not important.



Large size of sand and higher flow rate are better for organisms.

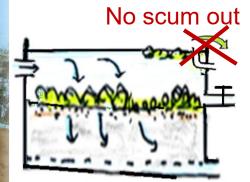
Scratch the bottom by stick.

Super saturated dissolved oxygen at the bottom.

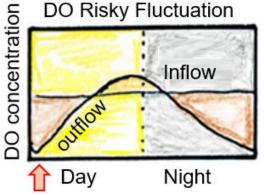
Sand is clear. Algal mat is just laid on the sand surface.

Scratch the

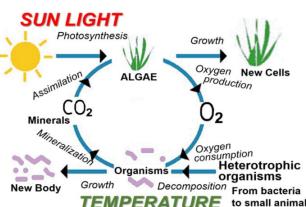
bottom by stick.



Active photosynthesis by algae and aerobic condition for small animals are the key for biological purification.

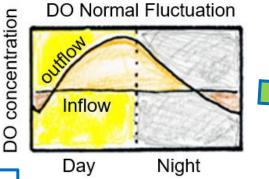

Aerobic condition is essential for biological activity to make delicious filtrate.

Soon heavy algal growth under strong sun shin.



Slow flow rate Consume up DO

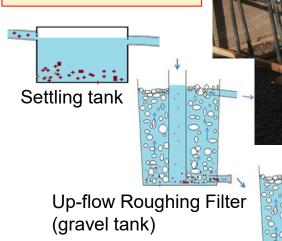
Anaerobic condition


Early days after scraping. Biomass of algal mat is small. Sand is clear. Aerobic condition in the sand layer

Bad smell

Over flow Scum out Drain

Over flow: scum out and Fast flow


Anaerobic condition

outflow Inflow Day Night

Fast Flow Rate

Delicious filtrate

We confirmed the performance of the higher flow rate using bucket model in Samoa.

Up-flow Roughing Filter (gravel tank)

Washing beach sand

mosquito net

using

Slow Sand Filter

Samoa

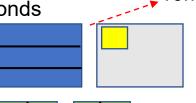
Every filtrate is delicious and safe water of germ bacteria free water.

EPS training in Ishigaki-Jima, Okinawa.

Part 14.

Receiving well 4 Sedimentation ponds 10.5mx65mx3.15mx 4 ponds

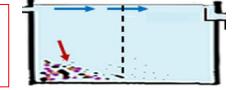
EPS 2025-OBW Nov. Part 14:127-130 4 slides


18 Filters:

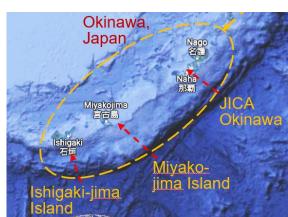
Each 27mx17.6mx4.08m

3 Sedimentation ponds 10mx40mx3.15mx3ponds

Sand wash yard


Fil

Filtrate tank



Residence time of sedimentation ponds: 0.4 day = 10 hrs. in manual.

Heavy suspended matters sink down to the bottom. But fine particles do not sink. And surface water drifts near the surface and passes the sediment pond. This means residence time of near surface water is shorter time than the manual.

JICA EPS training in Okinawa expanded to Ishigaki-Jima Island from 2009.

Ishigaki WTP

I explain always the importance of depth and flow.

Ishigaki plant Design capacity: 30,160m3/d in manual.

Slow sand filter:

4m/d: Design filter rate in manual.

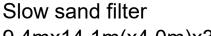
Each filter: 27m x 17.6m = 475.2m2 475.2m2 x **4m/d** = 1,901m3/d 1,901m3/d x 16filters = 30,413m3/d 2 filters are spare use.

Water supply per person
0.3m3/person/d⇒100,000persons.
0.5m3/person/d⇒ 60,000persons.
Big capacity

Ishigaki WTP is a large plant in Ishigaki island.

There are several water sources.

Ma'e sato reservoir


Omoto intake

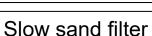
Yoshihara plant Designed capacity 1,040m3/d

(2 filters and 1 spare)

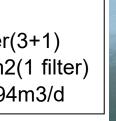
Sedimentation pond: 3.2mx18.2mx3.0mx2ponds

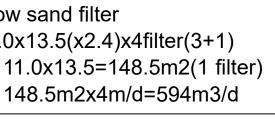
9.4mx14.1m(x4.0m)x3filter(2+1) 9.4x14.1=132.54m2(1 filter) 132.54m2x4m/d=530.2m3/d

Nosoko plant


Designed capacity 1,066m3/d (3 filters and 1 spare)

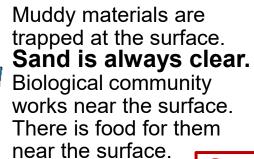
Sedimentation pond: 3.0x11.2x3.0x4ponds





11.0x13.5(x2.4)x4filter(3+1)11.0x13.5=148.5m2(1 filter)

Pump station for underground water

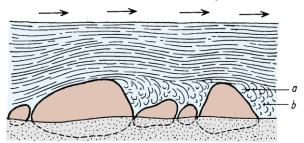

Biological activity is high in warm region.

Scraping the surface at Ishigaki plant.

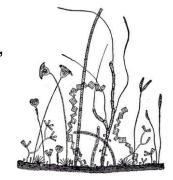
In case of surface water intake, muddy materials are easily accumulated at the surface of sand filter. Sand is clear. We need not remove all of the biological active layer.

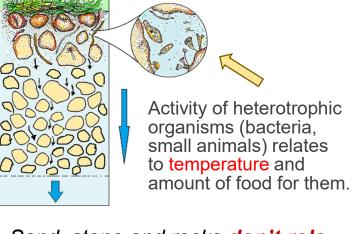
Grazer Activity is high in warm region

EPS is Wise Application of Natural Ecosystem. Key are Dissolved Oxygen and Gentle Flow.

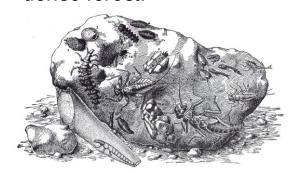

Part 15.

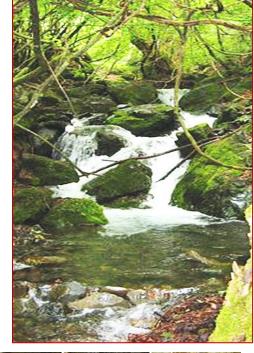
EPS 2025-OBW Nov. Part 15:131-139 9 slides


Running water, but unexpected flush out by storm event


When plants and animals do not flush out, water is always clear.

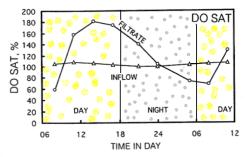
Vertical current is gentle for small animals on the surface of sand and soil particle.


Small animals on the surface of rocks collect turbid matters.



Algal activity relates to solar radiation.

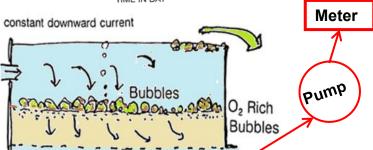
Sand, stone and rocks don't role and move in a small creak among dense forest.



Diurnal Changes in Turbidity Meter Value and **Turbidity** DO (mg/L) Dissolved Oxygen concentration in Filtrate Nabeya-Ueno WTP20 0.07 Nagoya Japan **Turbidity** 0.06 18 0.05 0.04 0.03 quinicut. 12 D.O 0.02 D. O. Manuel 0.01

3/5

3/6


Photosynthetic activity is high in day time. DO concentration becomes supersaturation. After the sampling pump, oxygen bubbles form in water. Turbidity is due to bubbles.

3/8

3/7

Bubbles are easily formed under supersaturate condition with any small hit.

Turbidity meter value is not equal to real suspended matter. This particulate by the meter is micro-bubble.

Micro bubbles

are observed.

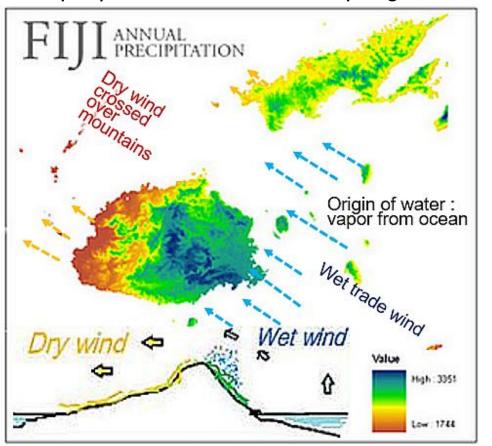
Bubbles are not formed in filtrate under the high pressure and gentle condition.

3/3

3/1

3/2

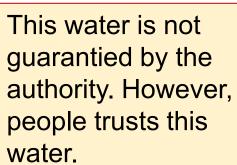
3/4

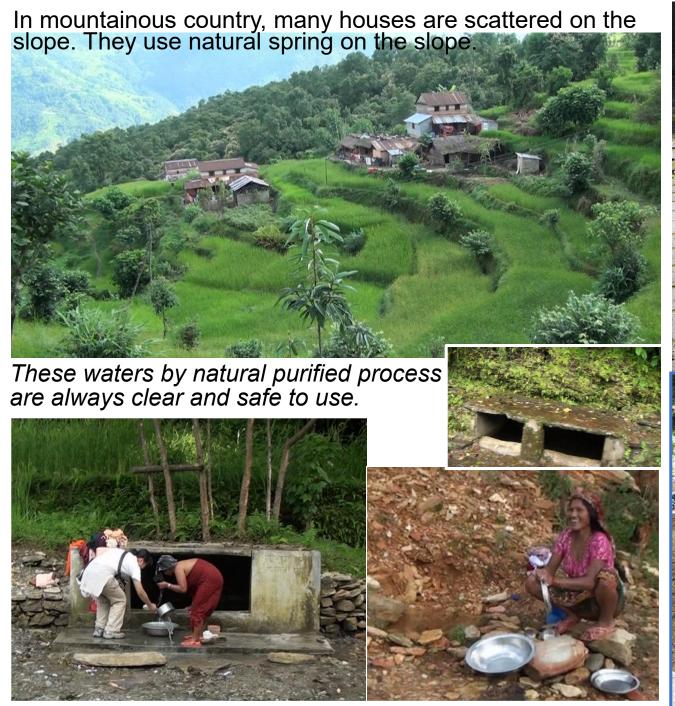

Sampling

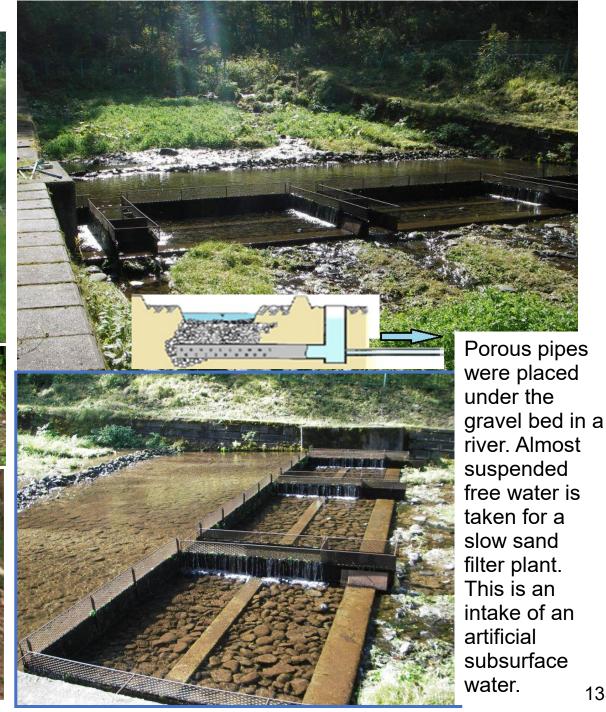
pump

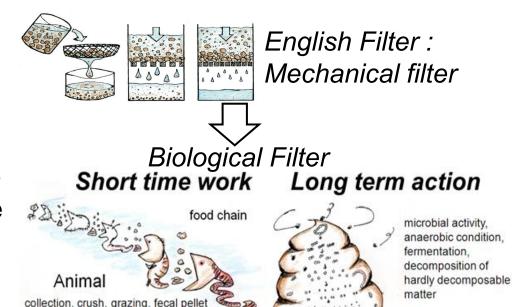
Where can we find safe water in nature?

People prefer to drink natural spring water.



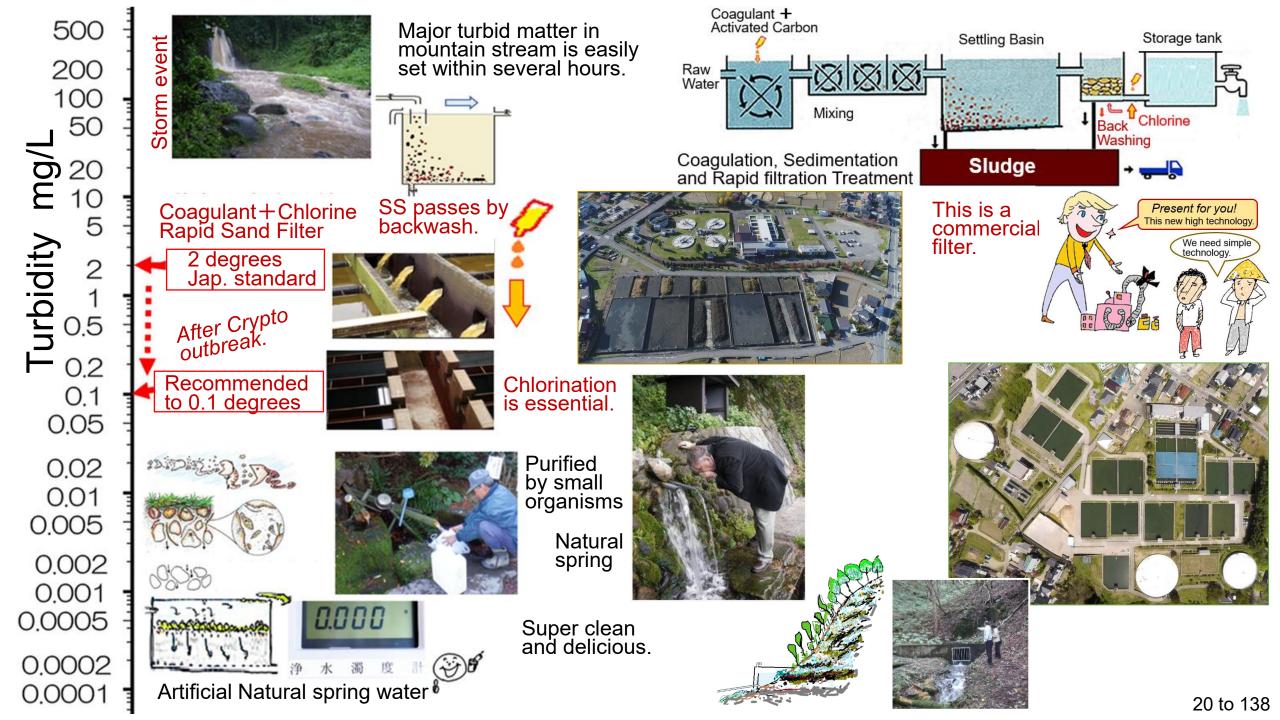

Vapor: distilled water


Percolated water


THIS is FOOD CHAIN

- 1 The present vertical type of slow sand filter was devised by James Simpson in 1829 after his 2,000 miles inspection trip all over the Britain.
- 2 This filter provided safe drinking water, free of pathogens to residents in London. This vertical type of filter spread round the world and was known as the "English Filter".
- 3 Slow sand filter has been believed that it was a mechanical filter with fine sand under slow current.
- 4 However, the major contribution of the purification of the impurities is the food chain in this system.
- 5 The word of "slow" was "gentle for organisms".
- 6 Recently, the English filter of "Slow Sand Filter" has been recognized as "Ecological Purification System" in Japan.

Biological activity depend on Temp & Radiation.



Ecological Purification System
New Concept and New Name

producer, carrying up particles

EPS-Use of Natural Process-Chemical Free: Gentle for small organisms Clean spring water Surface stream Reservoir Raw Up-flow Subsurface water Additional Water Roughing Filter Up-flow Sand Filter (gravel) Roughing Filter (EPS tank) Storage Tank (gravel) (down flow) Over-flow to Settling keep gentle Settling Tank flow for EPS heavy system muddy Food chain matter Drain valve Borehole Aeration Drain valve M Drain valve Public taps Trap & decompose Complete colloidal matter purification (Additional URF. Store the germ if necessary.) free safe & delicious water. Project in Fiji provides 6 litters / Tubewell person / day. For drink & cook. Smart Treatment System to make artificial Cascade Aeration spring water by Eco-friendly technique. aerated water

Wise Use of Natural Phenomena for Human Life. Safe and Delicious Water by EPS. **EPS from Japan to the World** Our Smart Technology. Ecological Purification System This is Smart Applied Ecology for Human Life. Slow Sand Filter

Gentle for small organisms

Food chain

Trust Our Sense!

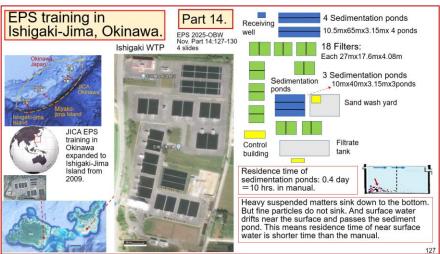
- 1. Knowing is NOT enough. We must APPLY it to something useful.
- 2. Willingness is NOT enough. We must PUT it into the PLAN and ACTION.
- 3. Putting the PLAN into action is NOT enough. We must ACCOMPLISH the goals.

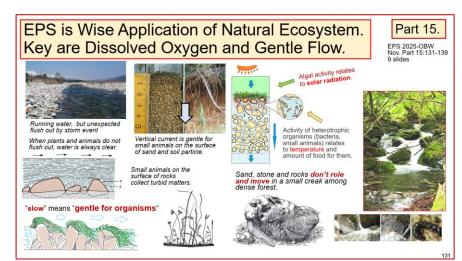
Super clean delicious water

Nigeria

Mechanism of EPS 7 minutes

https://www.youtube. com/watch?v=ArWM 3PVY3GM


79 to 139



https://youtu.be/mph2NIHyswo

https://youtu.be/eORovvI89sk